FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

425) Kam sahá gravitace Země?27. 02. 2007

Dotaz: Vždycky jsem měl zato, že beztížný stav na oběžné dráze je způsoben prostě velkou vzdáleností od Země. Ale tak to prý není. V jaké vzdálenosti od zeměkoule začíná opravdový beztížný stav, kam už gravitace Země nedosahuje? Díky. (Jiří Panschab)

Odpověď: Beztížný stav na oběžné dráze skutečně není způsoben tím, že by sem již nedosahovala gravitace. Gravitační působení Země přece drží např. Měsíc na jeho dráze okolo Země - a to je jistě dále, než oběžná dráha většiny (umělých) družic. Na druhou stranu stav bez tíže můžete pocítit i u povrchu Země, například v padajícím výtahu. Jak to tedy je? Těleso je v beztížném stavu, pokud nepůsobí svou tíhou na ostatní tělesa. Bývá to tehdy, když tíhová (resp. gravitační) síla je kompenzována nějakou jinou silou (nemající původ v jiných tělesech) opačného směru. V utrženém padajícím výtahu je touto silou setrvačnost, na oběžné dráze se zase uplatní odstředivá síla kruhového pohybu družice okolo Země.

Podívejme se ještě na dosah gravitační síly. Matematicky vzato dosáhne gravitace libovolně daleko neboli je všude. Různě daleko od gravitujícího tělesa (libovolné hmotné těleso, zvolme za příklad třeba Zemi) je však gravitační síla různě silná, čím dále od tělesa, tím slabší - klesá přitom dost rychle (s druhou mocninou vzdálenosti). Pro představu si naznačme, jak velkou gravitační silou bude Země přitahovat člověka o hmotnosti 80 kg:

  • Na povrchu Země bude přitahován silou zhruba 787 N.

  • V letadle letícím typicky 10 km nad povrchem Země to bude asi 785 N (takový rozdíl člověk nepostřehne).

  • Na mezinárodní kosmické stanici ISS létající zhruba 360 km nad povrchem Země bude přitahován Zemí stále ještě silou 705 N, tato síla ale bude vyvažována odstředivou silou způsobenou kruhovou (ve skutečnosti mírně eliptickou) drahou družice.

  • Kdyby se člověk nacházel na geostacionární družici (tedy asi 35 800 km nad rovníkem), byl by přitahován už jen silou 18 N a tato síla by byla opět kompenzována odstředivou silou způsobenou kruhovým pohybem.

  • Ve vzdálenosti Měsíce (okolo 385 000 km), by byl člověk přitahován Zemí silou už jenom 0,2 N.

  • Jeden světelný rok od Země gravitační síla Země působící na člověka o hmotnosti 80 km bude už jenom tři desetimiliardtiny Newtonu.

  • Na okraji naší Galaxie bude tato síla zcela neměřitelná, její velikost bude už jenom 0,08 trilióntiny Newtonu.

  • A pro ilustraci si jěště uveďmě, že v sousední Velké galaxii v Andromedě (asi 2,5 miliónu světelných let od nás) by na vás stále působila gravitační síla Země, její účinek by však byl tak titěrně malý, že v sebepřesnějších měřeních s ním nemá smysl počítat (což ostatně nemá ani v předchozích dvou případech). Přesto tuto sílu dokážeme stále vyjádřit (0,000 000 000 000 000 000 000 006 N) a je tedy vidět, že ani takhle daleko není úplně nulová.

(Jakub Jermář)   >>>  

426) Objem a (plošný) obsah27. 02. 2007

Dotaz: Dobrý den, jsem ze ZŠ už 30let a mám pocit, že jsme se to učili nějak jinak. je nějaký rozdíl mezi veličinou OBSAH a OBJEM? A jaké je popřípadě označení těchto veličin? Nějak se se svým dítkem nemůžu dohodnout. Děkuji za odpověď (Lenka Šebestová)

Odpověď: Veličina objem má význam prakticky totožný s významem v běžné mluvě, pomocí této veličiny udáváme, jak velkou část prostoru něco zabírá. Laicky řečeno kolik litrů či krychlových metrů by se místo daného předmětu, případně do daného předmětu vešlo. Základní jednotkou je metr krychlový, často se používá i vedlejší jednotka litr. Slova litr pochází (přes francouzštinu a řečtinu) z latinského libra a původně byl definován jako objem jednoho kilogramu čisté, vzduchoprázdné vody. Dnes je litr definován jako tisícina metru krychlového.

Slovem obsah se ve fyzice nejčastěji myslí veličina plošný obsah, která udává, jak velikou část dvourozměrného prostoru zaujímá daná dvourozměrný objekt. Základní jednotkou je metr čtverečný, často se ale zejména v zemědělství a zeměměřičství používají vedlejší jednotky jednotky hektar (1 ha = 10 000 m2) a ar (1 a = 100 m2)

V některých specifických případech se můžete setkat s tím, že slovem obsah bývá označen objem - typicky "obsah motoru 1 670 ccm" znamená, že objem spalovacích komor v motoru je 1 670 kubických centimetrů neboli 1,67 litru. Takovéto zaměňování slov obsah a objem by se však v učebnicích a fyzikálních textech vyskytovat nemělo.

K objemu a plošnému obsahu se dozvíte více například zde:
(Jakub Jermář)   >>>  

427) Nebezpečnost dopadající střely21. 02. 2007

Dotaz: Dobrý den, měl bych dotaz, když vystřelím náboj ze střelné zbraně (klasický 9mm projektil) kolmo vzhůru a dejme tomu, že střela dopadne zpět na místo výstřelu (zanedbáme odchýlení větrem). Je energie, tak velká že by zabila člověka? V knížce o balistice jsem se dočetl,že by člověka nezabila.Jak to tedy je?Předem děkuji za odpověď! (Jan Malotin)

Odpověď: Vážený pane,

na Váš dotaz odpovím následujícím příkladem:

Mějme např. 9 mm náboj se střelou o hmotnosti 9 gramů, vystřelenou kolmo vzhůru rychlostí 360 m·s-1. Takto vystřelená střela doletí do výšky cca 800 m. Z této výšky zpět na zem pak dopadne rychlostí cca 70 m/s. Obecně problematické je hodnocení účinku střel na živé tkáně. Je zřejmé, že účinek bude ovlivněn řadou faktorů - konstrukcí a materiály střely, vlastnostmi zasažené části těla atd. Pro posouzení účinku, který nelze bez bojového použití prakticky ověřovat, se používá celá řada nejrůznějších kritérií, např.:
  • na nechráněnou živou sílu v polním stejnokroji je nutná kinetická dopadová energie střely min. 100 J (samozřejmě, že živá síla má i méně odolné části). V našem případě má střela energii 0,5·9·10-3·702 = 22,05 J

  • na nechráněnou živou sílu v polním stejnokroji je nutná specifická dopadová kinetická energie střely min. 1 MJ·m-2. V našem případě je tato dopadová kinetická energie vztažená na jednotku příčné plochy střely 22,05·4/[3,14·(9·10-3)2] = 0,35 MJ/m2

  • řada dalších kritérií je uvedena např. v knize Kneubuehl, B.P.: Balistika. Naše vojsko Praha. 2004. ISBN 80-206-0749-8. Jedním z uváděných kritérií je tzv. PIR kritérium, které by mělo být větší než cca 50. V našem případě je pouze cca 6.
Závěr: Takto vystřelená střela bude po dopadu na zem proti živé síle prakticky neúčinná (neřešíme zde malou pravděpodobnost zásahu oka či krční tepny).

(doc. Ing. Stanislav BEER, CSc. z Univerzity Obrany v Brně)   >>>  

428) Sytá vodní pára16. 02. 2007

Dotaz: Dobrý den, máme dvě nádoby stejného objemu, ve kterých je voda, rovněž stejného objemu (přičemž voda nezabírá celý objem nádoby). V jedné nádobě je nad hladinou vody vzduch a v druhé je vzduch vypuštěn, tzn. nad hladinou vody se nachází pouze vodní páry. Můj dotaz zní: bude v nádobě, ve které není vzduch, větší množství vodních par, nebo bude v obou nádobách stejné množství vodní páry (nad vodní hladinou)? (petr)

Odpověď: V nádobě, v níž je v rovnovážném stavu voda se svými parami, je tzv. dynamická rovnováha. To znamená, že ačkoliv z makroskopického pohledu se nic nemění (množství kapalné a plynné fáze je pořád stejné), na mikroskopické úrovni se něco děje: molekuly vody se neustále chaoticky pohybují, občas některá "vyskočí" z kapaliny a stane se součástí par ("vypaří se"), jindy se zase molekula páry vrátí do kapaliny ("zkondenzuje").

Rovnováha závisí tedy na tom, jak "husto" je molekul vodní páry v plynné fázi nad kapalinou - pokud příliš mnoho, kondenzují, pokud příliš málo, nastává vypařování z kapalné fáze. Přitom nezáleží na tom, mezi čím se tyto molekuly vodní páry pohybují - zda mezi částicemi vzduchu, ve vzduchoprázdnu nebo v jakémkoli jiném plynu; záleží pouze na jejich množství v jednotce objemu. Selským rozumem usoudíme, že nemůže být tak úplně jedno, zda se molekuly pohybují mezi "ničím" nebo mezi částicemi vzduchu - ale za běžných podmínek je jakýkoli plyn natolik "řídký", že částice v něm se pohybují dostatečně volně.

Je-li ve Vašich nádobách stejné množství kapalné fáze a v obou případech jde o rovnovážný stav, musí v nich být také stejná množství vody v plynném skupenství, v důsledku tedy stejný tlak molekul vodní páry. Liší se pouze celkový tlak nad kapalinou v nádobě - v jednom případě je plynná fáze tvořena pouze vodními parami, v druhém stejným množstvím vodních par a navíc ještě vzduchem, takže celkový tlak je zde vyšší, tvořený součtem tzv. parciálních (částečných) tlaků jednotlivých složek (vodní pára, kyslík, dusík, oxid uhličitý... ).

A jaký je tlak syté vodní páry, tedy páry v dynamické rovnováze s kapalnou vodou? To závisí na teplotě. Např. při 10 °C je to asi 1,2 kPa (setina atmosférického tlaku), při 50 °C asi 12 kPa, při 100 °C je to akorát atmosférický tlak a při 120 °C je to asi 2,5 násobek atmosférického tlaku.

(Pavel Böhm a Hanka Böhmová)   >>>  

429) Čínský ptáček16. 02. 2007

Dotaz: Hezký den. Prosím, jak funguje hračka "čínský ptáček". Nikdy jsem tuto hračku v praxi neviděl. Je uvedena v uč. fyziky pro G - Molekulová fyzika a termika, 4. vyd. 2000 na str. 110-111. Děkuji. (Zbyněk Matějka, Mgr.)

Odpověď: Tato hračka, "čínský ptáček" je tvořena skleněnou baňkou - tělem, na níž navazuje skleněná trubička - krček - zakončená trochu širší hlavičkou (obr. 1). Celý ptáček je uchycen tak, aby se mohl volně otáček okolo osy vyznačené zeleným křížkem. V těle ptáčka je těkavá kapalina, údajně ether, nad kapalinou je jak v těle (A), tak i v krčku a hlavičce (B) sytá pára této kapaliny. Jakmile ptáčkovi vodou smočíme zobáček, dojde vlivem odpařování vody ze zobáčku k ochlazování hlavičky a v hlavičce a krčku spolu s teplotou poklesne i tlak sytých par, zatímco v tělíčku zůstává tlak stále stejný. Tento rozdíl tlaků vytlačuje kapalinu z tělíčka do krčku (obr. 2). Spolu s přesouvající se kapalinou se pomalu přesouvá i těžiště celého ptáčka. Vystoupá-li kapalina dostatečně vysoko, ptáček se převáží a nakloní dopředu. Když se nakloní dostatečně (obr. 3), dojde k propojení tělíčka a hlavičky, tlaky se vyrovnají, kapalina přeteče zpět do tělíčka a ptáček se opět napřímí (opět obr. 1). Při předklonu si ale ptáček smočil zobáček ve skleničce s vodou, která stojí před ním, takže se voda z jeho zobáčku zase začne odpařovat a celé se to může opakovat.

(Jakub Jermář)   >>>